

Advances in Subsea Data Harvesting Technology

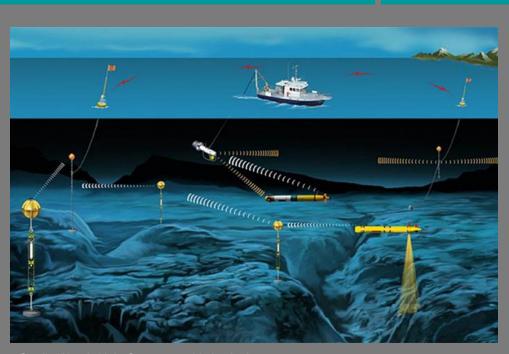
Ol China 2018, Qingdao

Autonomous and Remotely Operated Underwater Vehicles and Vessels Sensing Session

Jose M Puig

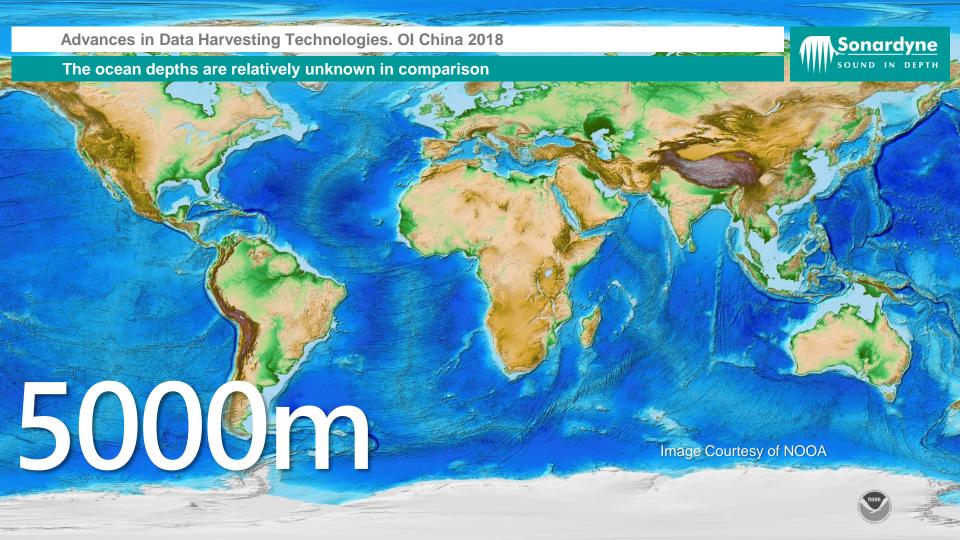
Regional Sales Manager Sonardyne Asia Pte Ltd

POSITIONING
NAVIGATION
COMMUNICATION
MONITORING
IMAGING


Advances in Data Harvesting Technologies. OI China 2018

What is data harvesting?

© Paul Fleet - stock.adobe.com



Credit: Woods Hole Oceanographic Institution

Why is data harvesting important?



70% WATER HIGH FREQUENCY ATTENUATO

Challenges: Unforgiving Environment

Advances in Data Harvesting Technologies. OI China 2018

Challenges: ... and difficult to sense

Challenges: ... Expensive

- Previous search
- Searched by Ocean Infinity
- Wide search area
- Final satellite communication plane somewhere along arc

- 0.04%
- \$274,364,620,924.00 USD

FIRST CAMPAIGN

- 60,000 km2
- \$56 Million USD

SECOND CAMPAIGN

- 106,200 km2
- \$70 Million USD

Faster Surveys at Extreme Depths

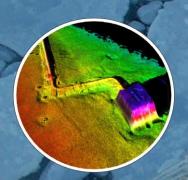
OCEAN DISCOVERY PRIZE®

Getting to the Bottom of Our Ocean.

Challenges: ... The technology required

Technology challenges

- More autonomy (Robotics)
- Better navigation (For Robots)
- Smarter instruments
- Efficient an Reliable Comms (Better Data Harvesting)

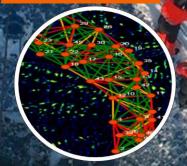


DATA HARVESTING TECHNOLOGY

Advances in Data Harvesting Technologies. OI China 2018

Sonardyne Sound IN DEPTH

Current Data Harvesting Applications


SEABED MAPPING

SUBSEA STRUCTURE MONITORING

ENVIRONMENTAL/ OCEANOGRAPHY

O&G RESERVOIR MONITORING

PLATE TECTONICS

DEFENCE

TSUNAMI EARLY WARNING

SUBSEA MINING

Advances in Data Harvesting Technologies. OI China 2018

Underlying Technologies


WIRELESS COIMS

Subsea Wireless Communications

Acoustic Signalling – Advances and Limitations

Where did we start?

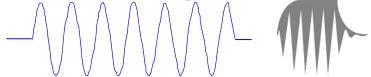

Narrowband signal (tone) – Legacy, no longer used

Acoustic Signalling – Advances and Limitations

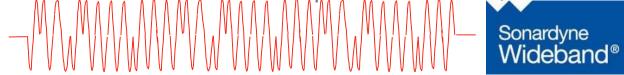
Where did we start?

Narrowband signal (tone) – Legacy, no longer used by Sonardyne

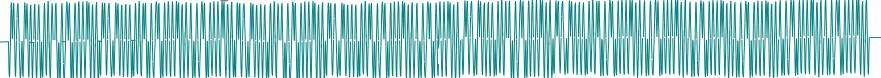
Wideband 1 – Dramatic performance improvement over tone signals



Sonardyne Wideband®

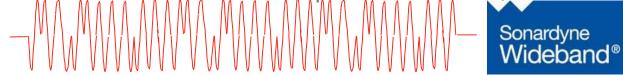

Acoustic Signalling – Advances and Limitations

Where did we start?

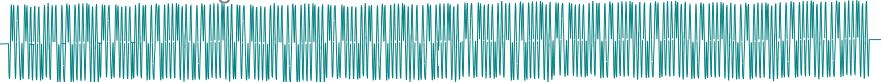

Narrowband signal (tone) – Legacy, no longer used by Sonardyne

Wideband 1 - Dramatic performance improvement over tone signals

Wideband 2 - Longer codes for robust comms in harshest environments

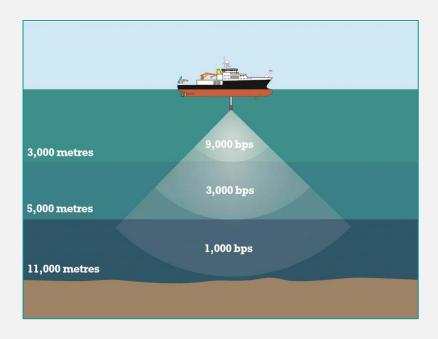

Acoustic Signalling – Advances and Limitations

Where did we start?


Narrowband signal (tone) – Legacy, no longer used by Sonardyne

Wideband 1 – Dramatic performance improvement over tone signals

Wideband 2 - Longer codes for robust comms in harshest environments


Where are we now?

Sophisticated coding techniques **BUT** still limited to 18kbps due to Physics

Acoustics

Effective Bandwidth Use

Digital

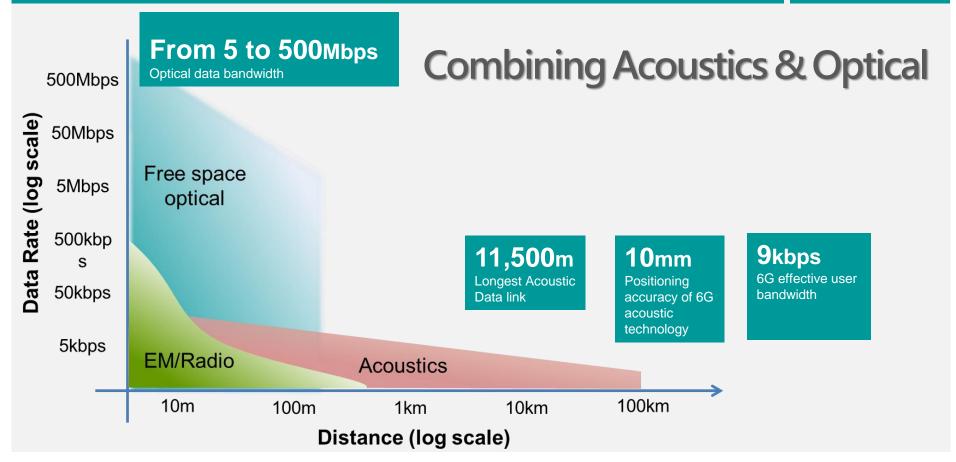
Combine Telemetry & Tracking

18000 bps

From 200bps to 9000bps effective bandwidth

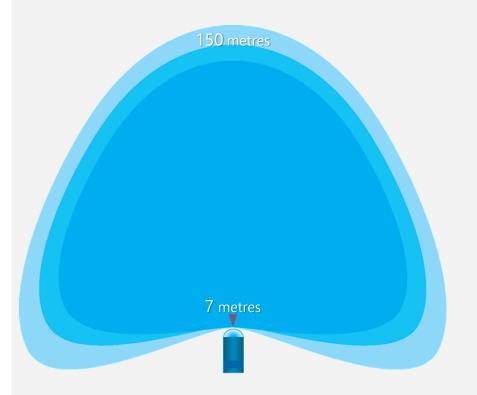
Vessel, USV & AUV

Choose the right platform for your harvest (or hop from shore)



HD VIDEO

2 mins IN > 34 hrs



Free Space Optics

Free Space Optics

Effective Bandwidth Use

Large Bandwidth

Use optical modulation to enable larger data transfers

500 Mbps

10Mbps at >100m 500Mbps at <7m

AUV or ROV

Choose the right platform for your harvest

MINS

_ MINS

Underlying Technologies

SMART SENSORS

Advances in Data Harvesting Technologies. OI China 2018

Smart Sensors

On board Processing

Different

Form

Factors and

Battery

Pack Opt

SHART 8

Integrated MF Transducer/Modem

FFT spectral, Statistic and bespoke

Dual 32GB CardsOptional 200 GB

Future Optical Comms

10 YEAR BATTERY

Modem

9Kbs

Range of Internal Sensors External Input Also

APPLICATIONS

Advances in Data Harvesting Technologies. OI China 2018

Tsunami Detection

- 2-way satellite comms link
- Direct control of acoustic transceiver
- Allows acoustic commands to be sent to subsea unit
 - to alter set-up parameters
 - diagnostics
 - to Force or Cancel Events

not supplied by Sonardyne

Buoy System:-

- Wideband signal technology
- Lightweight 9kg in water
- Low power 1W at 24V
- Acoustic baffle
- 5km+ acoustic range
- · Armoured cable to buoy

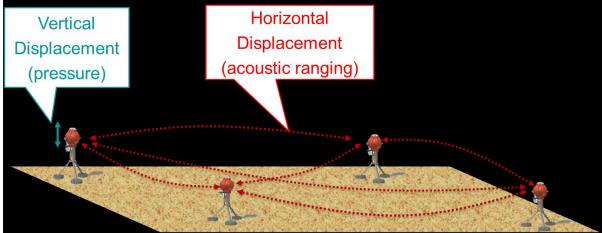
- LMF 15kHz
- High speed 100-9,000 bps
- Forward Error Correction (FEC)
- Wideband technology

- 6000m rated housing
- Lithium battery pack for ~8 year deployment from dual battery pack
- Optional acoustic release

Systems deployed around the world

USA - A deployed Tsunami Compatt recorded a small meteo-tsunami event during technology trials

Equador – Tsunami detection buoys deployed in the Ring of Fire protect Ecuador's coastal communities from tsunami threats Mediterranean - Bottom
Pressure Recorders have
been integrated into an
undersea cabled warning
system for the region


India - A wide area network of Tsunami Compatts in the Indian Ocean provide early tsunami warnings for the Bay of Bengal

Advances in Data Harvesting Technologies. Ol China 2018

Subsidence Measurement

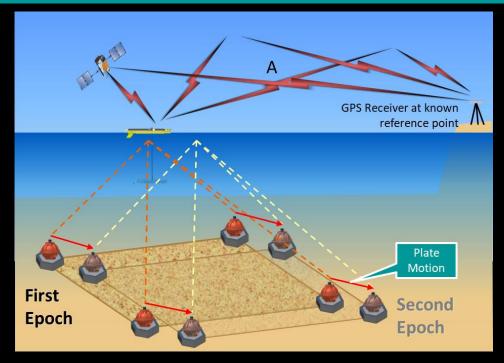
Shell's Ormen Lange field in the Norwegian North Sea

- 220 seabed transponders spread over an area of 50km x 20km
- ->600 million observations
- Ca. 1 Gb of data uploaded acoustically
- Recently recovered after 6 years deployment

An Autonomous Seafloor System for Monitoring Reservoir Deformation

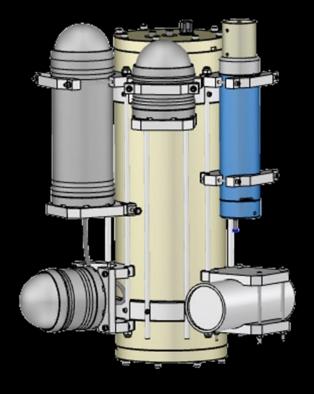
Stephen Bourne, Paul Hatchell, Chris Leaf, Hanno Klemm, Stefan Kampshoff, Andrew Cook - (SHELL), Simon Partridge - (Sonardyne International)

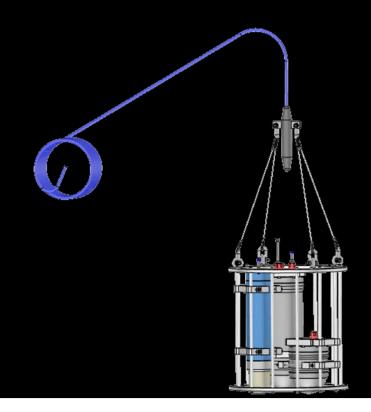
'Fetch' transponders on the seabed



GPS-A

GPS-A

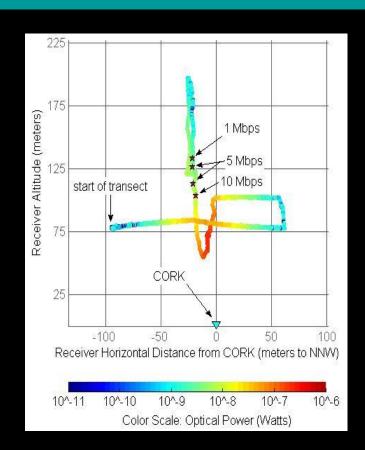

Chadwell and Spiess, 2008


Plate motion at the ridge-transform boundary of the south Cleft segment of the Juan de Fuca Ridge from GPS-Acoustic data. Article in **Journal of Geophysical Research Atmospheres**

High Band-with Data Retrieval from Seabed

BLUECOMM DUNKER

Advances in Data Harvesting Technology. OI China 2018

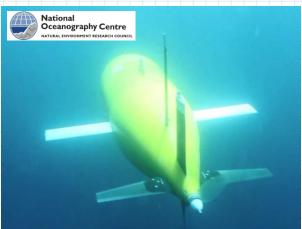

Bluecomm Data Harvesting Dunker

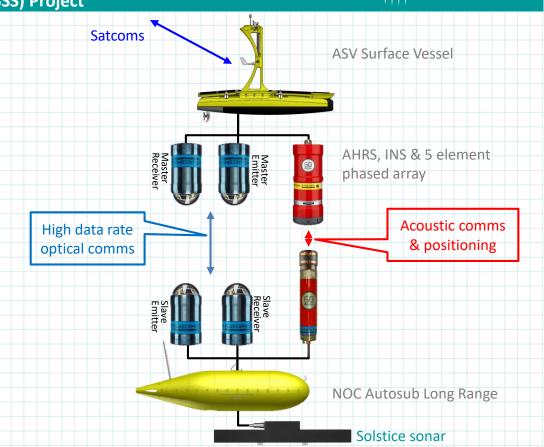
Optical communication system expands CORK seafloor observatory's bandwidth

N. Farr, J. Ware, C. Pontbriand, T. Hammar Applied Ocean Physics and Engineering M. Tivey Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole. MA 02543 USA

Max Range (meters) Data transfer rate (mbps)

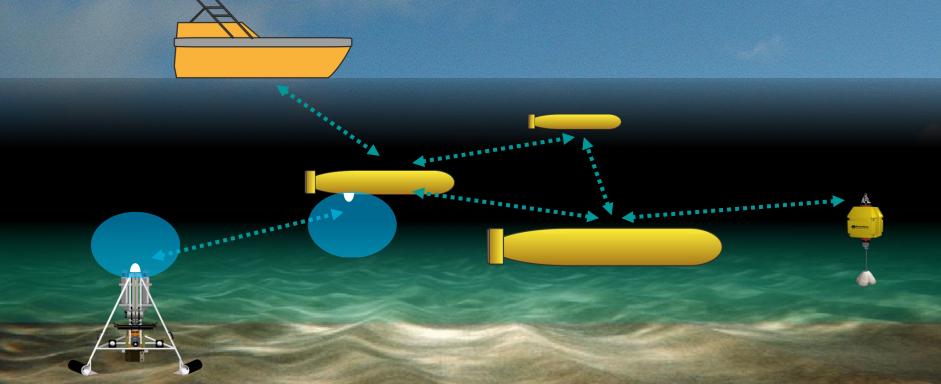
108	1, 5, 10
118	1,5
128	1,5
138	1




Advanced in Data Harvesting Technologies. Ol China 2018

Sonardyne "" sound in DEPTH

Autonomous Surface/Sub-surface Survey (ASSS) Project



Interconnected Subsea Environment

WHAT CAN YOU DO WITH IT?

Thank you for your time today Any questions?

SONARDYNE.COM

E in F

POSITIONING
NAVIGATION
COMMUNICATION
MONITORING
IMAGING